Features

- Delay Time Range: 3.7s to 20h
- RC Oscillator Determines Timing Characteristics
- Relay Driver with Z-diode
- Debounced Input for Toggle Switch
- Two Debounced Inputs: ON and OFF
- Load-dump Protection
- RF Interference Protected
- Protection According to ISO/TR7637-1 (VDE 0839)
- Inputs Switched to $\mathrm{V}_{\text {Batt }}$

1. Description

The bi-polar long-term timer U6046B is designed to automatically limit the operation time of high loads in the harsh automotive environment with a preset delay time. With the power-on-reset function the timers guarantee that current consuming devices are

A血臬

Rear Window Heating Timer/ Long-term Timer

U6046B

 not operated unintentionally.The delay time can be interrupted manually, but a retrigger function is not provided.
Figure 1-1. Block Diagram with External Circuit

2. Pin Configuration

Figure 2-1. Pinning

Table 2-1. \quad Pin Description

Pin	Symbol	Function
1	GND	Reference point, ground
2	OUT	Relay control output
3	ON	Switch-on input
4	OFF	Switch-off input
5	TOGGLE	Toggle input
6	OSC	RC-oscillator input
7	VSTAB	Stabilized voltage
8	VS	Supply voltage

3. Functional Description

3.1 Power Supply (Pin 8)

For reasons of interference protection and surge immunity, the supply voltage (pin 8) must be provided with an RC circuit as shown in Figure 3-1. Dropper resistor, R_{1}, limits the current in case of overvoltage, whereas C_{1} smooths the supply voltage at pin 8 .
Recommended values are: $R_{1}=510 \Omega, C_{1}=47 \mu \mathrm{~F}$.
The integrated Z -diode (14 V) protects the supply voltage, V_{S}. Therefore, the operation of the IC is possible between 6 V and 16 V , supplied by $\mathrm{V}_{\text {Batt }}$.

However, it is possible to operate the integrated circuit with a 5 V supply, but it should be free of interference voltages. In this case, pin 7 is connected to pin 8 as shown in Figure $3-2$ on page 4, and the $\mathrm{R}_{1} \mathrm{C}_{1}$ circuit is omitted.

Figure 3-1. Basic Circuit for 12V Supply and Oscillator

Figure 3-2. Basic Circuit for $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

3.2 Oscillator (Pin 6)

The external components R_{2} and C_{2} determine the oscillator frequency. The capacitor C_{2} is charged by R_{2} and discharged by an integrated $2-k \Omega$ resistor.

A stable oscillator frequency with minimal influence of the temperature coefficient of the integrated resistor is achieved with $R_{2} \gg 2 \mathrm{k} \Omega$

Oscillator frequency, f , is calculated as follows:
$f=\frac{1}{t_{1}+t_{2}}$
where
$\mathrm{t}_{1}=$ charge time $=\alpha_{1} \times \mathrm{R}_{2} \times \mathrm{C}_{2}$
$\mathrm{t}_{2}=$ discharge time $=\alpha_{2} \times 2 \mathrm{k} \Omega \times \mathrm{C}_{2}$
α_{1} and α_{2} are constants as such
$\alpha_{1}=0.833$ and $\alpha_{2}=1.551$ when $\mathrm{C}_{2}=470 \mathrm{pF}$ to 10 nF
$\alpha_{1}=0.746$ and $\alpha_{2}=1.284$ when $\mathrm{C}_{2}=10 \mathrm{nF}$ to 4700 nF
The debounce time, t_{3}, and the delay time, t_{d}, depend on the oscillator frequency, f, as follows:
$t_{3}=6 \times \frac{1}{f}$
$t_{d}=73728 \times \frac{1}{f}$

Table 6-1 on page 10 shows relationships between $t_{3}, t_{d}, C_{2}, R_{2}$ and frequencies from 1 Hz to 20 kHz.

3.3 Relay Control Output (OUT)

The relay control output is an open-collector Darlington circuit with an integrated 23-V Z-diode to limit the inductive cut-off pulse of the relay coil. The maximum static collector current must not exceed 300 mA and saturation voltage is typically 1.1 V at 200 mA .

3.4 Interference Voltages and Load-dump

The IC supply is protected by R_{1}, C_{1}, and an integrated Z-diode, while the inputs are protected by a series resistor, integrated Z-diode and RF capacitor (see Figure 3-6 on page 8).

The relay control output is protected via the integrated $23-\mathrm{V}$ Z-diode in the case of short interference peaks. It is switched to a conductive condition for a battery voltage of greater than approximate 40 V in the case of a load-dump. The output transistor is dimensioned so that it can withstand the current produced.

3.5 Power-on Reset

When the operating voltage is switched on, an internal power-on reset pulse (POR) is generated which sets the logic of the circuits to a defined initial condition. The relay output is disabled.

Figure 3-3. TOGGLE Function

3.6 Relay Control Output Behavior (Pin 2)

Time functions (relay output) can be started or interrupted by the three inputs i.e., ON, OFF or TOGGLE (pins 3, 4 and 5).

The relay becomes active if the time function is triggered, and the relay contact is interrupted after the elapse of delay time, t_{d}. There are two input possibilities:

3.6.1 Toggle Input

When the push-button (TOGGLE) switch, S_{1}, is pressed for the first time, the relay becomes active after the debounce time, t_{3}, i.e., the relay output, pin 2, is active (see Figure 3-3 on page 5).

Renewed operation of S_{1} causes the interruption of the relay contact and the relay is disabled. Each operation of the toggle switch, S_{1}, changes (alters) the condition of the relay output when the debounce time, t_{3}, is exceeded i.e., the TOGGLE function.

If the relay output is not disabled by pressing the switch S_{1}, the output is active until the delay time, t_{d}, is over.

3.6.2 ON, OFF Inputs (Pins 3 and 4)

To avoid simultaneous operation of both inputs, pin 3 (ON) and pin 4 (OFF), use of two-way contacts with a centre-off position with spring returns (also known as rocker-actuated switch) is recommended (see Figure 3-4 on page 7).

Pressing the push-button switch (pin 3-ON) leads to the activation of the relay after the debounce time, t_{3}, whereas the switching of the pin 4 switch correspondingly leads to the relay being de-energized. If the relay is not de-energized by the push-button switch, it becomes disabled after the delay time, t_{d}, is over.

Combined operation, TOGGLE and ON/OFF is not possible because both inputs are connected to the same debounce stage. Debouncing functions on both edges i.e., whenever S_{1} is ON or OFF.

If pin 3 (input ON) is continuously closed, the delay time, t_{d}, still elapses and the relay is interrupted. This can be used to generate a defined power-on-reset pulse to trigger, for example, a delay time, t_{d}, when the battery voltage, $\mathrm{V}_{\text {Batt }}$, is applied.
Figure 3-6 on page 8 shows the input circuit of U6046B. It has an integrated pull-down resistance (20 k Ω), RF capacitor (15 pF) and Z-diode (7 V). It reacts to voltages greater than 2 V . The external protective resistor has a value of $20 \mathrm{k} \Omega$ and the push-button switch, S , is connected to the battery as shown in the diagram.

Contact current, I , is calculated as follows:
$I=\frac{V_{\text {Batt }}-V_{Z}}{R(=20 \mathrm{k} \Omega)}$ where $V_{\text {Batt }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=7 \mathrm{~V}$
$I=\frac{(12-7) V}{20 \mathrm{k} \Omega} \approx 0.25 \mathrm{~mA}$

It can be increased by connecting a $5.6 \mathrm{k} \Omega$ resistor from the push-button switch to ground as shown in Figure 7-4 on page 13.

Figure 3-4. ON/OFF Function

3.7 Timing Waveform

Figure 3-5. Behavior of the Relay Control Output as a Function of Input Condition

Figure 3-6. Input Circuit U6046B

4. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Operating voltage, static, 5 min	$\mathrm{~V}_{\text {Batt }}$	24	V
Ambient temperature range	$\mathrm{T}_{\text {amb }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$

5. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient DIP8	$\mathrm{R}_{\mathrm{thJA}}$	120	$\mathrm{~K} / \mathrm{W}$
SO8	$\mathrm{R}_{\mathrm{thJA}}$	160	$\mathrm{~K} / \mathrm{W}$

6. Electrical Characteristics

$\mathrm{V}_{\text {Batt }}=13.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, reference point ground, Figure 2-1 on page 2, unless otherwise specified

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit
1.1	Operating voltage	$\begin{aligned} & R_{1} \geq 510 \Omega \\ & t<5 \text { min } \\ & t<60 \text { min } \end{aligned}$		$V_{\text {Batt }}$	6		$\begin{aligned} & \hline 16 \\ & 24 \\ & 18 \end{aligned}$	V
1.2	5V supply	Without $\mathrm{R}_{1}, \mathrm{C}_{1}$, Figure 3-2 on page 4	7, 8	$\mathrm{V}_{8}, \mathrm{~V}_{7}$	4.3		6.0	V
1.3	Stabilized voltage	$V_{\text {Batt }}=12 \mathrm{~V}$	7	V_{7}	5.0	5.2	5.4	V
1.4	Undervoltage threshold	Power on reset		V_{8}	3.0		4.2	V
1.5	Supply current	All push buttons open	8	I_{8}		1.3	2.0	mA
1.6	Internal Z-diode	$\mathrm{I}_{8}=10 \mathrm{~mA}$	8	V_{8}	13.5	14	16	V
2	Relay Control Output, Pin 2							
2.1	Saturation voltage	$\begin{aligned} & I_{2}=200 \mathrm{~mA} \\ & I_{2}=300 \mathrm{~mA} \end{aligned}$		V_{2}		1.2	1.5	V
2.2	Leakage current	$\mathrm{V}_{2}=14 \mathrm{~V}$		I_{2}		2	100	$\mu \mathrm{A}$
2.3	Output current			I_{2}			300	mA
3	Output Pulse Current							
3.1	Load dump pulse	$\mathrm{t} \leq 300 \mathrm{~ms}$		I_{2}			1.5	A
3.2	Internal Z-diode	$\mathrm{I}_{2}=10 \mathrm{~mA}$		V_{2}	20	22	24	V
4	Oscillator Input $\mathrm{f}=\mathbf{0 . 0 0 1}$ to $\mathbf{4 0} \mathbf{~ k H z}$, See Table 6-1 on page 10, Pin 6							
4.1	Internal discharge resistance	$\mathrm{V}_{6}=5 \mathrm{~V}$		R_{6}	1.6	2.0	2.4	$\mathrm{k} \Omega$
4.2	Switching voltage	Lower Upper		$\begin{aligned} & \hline V_{6 L} \\ & V_{6 H} \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 3.1 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 3.5 \end{aligned}$	V
4.3	Input current	$\mathrm{V}_{6}=0 \mathrm{~V}$		$-I_{6}$			1	$\mu \mathrm{A}$

6. Electrical Characteristics (Continued)
$\mathrm{V}_{\text {Batt }}=13.5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$, reference point ground, Figure 2-1 on page 2, unless otherwise specified

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit
5	Switching Time							
5.1	Debounce time			t_{3}	5		7	cycles
5.2	Delay time			t_{d}	72704		74752	cycles
6	Inputs ON, OFF, TOGGLE; Pins 3, 4, 5							
6.1	Switching threshold voltage			$V_{3,4,5}$	1.6	2.0	2.4	V
6.2	Internal Z-diode	$\mathrm{I}_{3,4,5}=10 \mathrm{~mA}$		$\mathrm{V}_{3,4,5}$	6.5	7.1	8.0	V
6.3	Pull-down resistance	$\mathrm{V}_{3,4,5}=5 \mathrm{~V}$		$\mathrm{R}_{3,4,5}$	13	20	50	k ת

Table 6-1. \quad Dimensioning for Oscillator Frequency, Debounce Time and Delay Time

Frequency f	Debounce Time ${ }_{3}$	Delay Time t_{d}		C_{2}	R_{2}
Hz	ms	min	s	nF	k Ω
1	6000	1229		4700	280
2	3000	614		1000	650
3	2000	410		1000	440
4	1500	307		1000	330
5	1200	246		1000	260
6	1000	205		1000	220
7	857	176		1000	190
8	750	154		1000	160
9	667	137		1000	140
10	600	123		1000	130
20	300	61		100	650
30	200	41		100	440
40	150	31		100	330
50	120	25		100	260
60	100	20		100	220
70	86	18		100	190
80	75	15		100	160
90	67	14		100	140
100	60	12		100	130
200	30		369	10	600
300	20		246	10	400
400	15		184	10	300
500	12		147	10	240
600	10		123	10	200
700	9.00		105	10	170
800	8.00		92	10	150
900	7.00		82	10	130
1000	6.00		74	10	120

Table 6-1. Dimensioning for Oscillator Frequency, Debounce Time and Delay Time (Continued)

Frequency f	Debounce Time t_{3}	Delay Time t_{d}		C_{2}	R_{2}
Hz	ms	min	s	nF	k Ω
2000	3.00		37	1	600
3000	2.00		25	1	400
4000	1.50		18	1	300
5000	1.20		15	1	240
6000	1.00		12	1	200
7000	0.86		11	1	170
8000	0.75		9	1	150
9000	0.67		8	1	130
10000	0.60		7	1	120
11000	0.55		6.7	1	110
12000	0.50		6.1	1	99
13000	0.46		5.7	1	91
14000	0.43		5.3	1	85
15000	0.40		4.9	1	79
16000	0.38		4.6	1	74
17000	0.35		4.3	1	70
18000	0.33		4.1	1	66
19000	0.32		3.9	1	62
20000	0.30		3.7	1	59

7. Applications

Figure 7-1. Generation of a Monostable Delay Time, t_{d}, Caused by Applying the Operating Voltage $\mathrm{V}_{\text {Batt }}$, not Externally Deactivatable

Figure 7-2. Generation of a Monostable Delay Time, t_{d}, by Applying the Operating Voltage $\mathrm{V}_{\text {Batt }}$, Deactivatable by the OFF Push-button

Figure 7-3. Monostable Delay Time, t_{d}, can be Activated by the ON Push-button, not Externally Deactivatable

Figure 7-4. Increasing the Contact Current by Parallel Resistors

8. Ordering Information

Extended Type Number	Package	Remarks
U6046B-MY	DIP8	Pb-free
U6046B-MFPY	SO8	Tubed, Pb-free
U6046B-MFPG3Y	SO8	Taped and reeled, Pb-free

9. Package Information

10. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

Revision No.	History
	• Put datasheet in a new template
4674B-AUTO-09/05	- Pb-free Logo on page 1 added - Heading Rows on Table "Absolute Maximum Ratings" on page 9 added - Table "Ordering Information" on page 14 changed

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

emory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
\section*{Microcontrollers}
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Abstract

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use

 as components in applications intended to support or sustain life.© Atmel Corporation 2005. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$ and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

